Package index
-
add_pmfs() - Add probability mass functions
-
add_time_indexing() - Add time indexing to count data
-
assert_cols_det_unique_row() - Check a set of columns in a data frame uniquely identify data frame rows.
-
assert_daily_data() - Assert that the vector of dates being passed in contains dates for each day
-
assert_dates_within_frame() - Assert that the second vector of dates is within the period after the first date in the first set of dats and the maximum date
-
assert_df_not_empty() - Assert that the dataframe being passed to the function is not empty
-
assert_elements_non_neg() - Assert that all elements of a vector are non-negative
-
assert_equivalent_indexing() - Assert that two tibbles of date and time mapping align
-
assert_int_or_char() - Assert that a vector is either of a vector of integers or a vector of characters
-
assert_no_dates_after_max() - Check that all dates in dataframe passed in are before a specified date
-
assert_no_repeated_elements() - Check that there are no repeated elements in the vector
-
assert_non_missingness() - Assert that there is no missignness in a particular vector
-
assert_req_count_cols_present() - Check that the input count data contains all the required column names
-
assert_req_ww_cols_present() - Check that the input wastewater data contains all the required column names
-
assert_rt_correct_length() - Assert that R(t) specified for generating simulated data is of sufficient length
-
assert_single_value() - Assert that there is only a single value in a particular column
-
assert_site_lab_indices_align() - Assert that the specified site and lab indices line up
-
assert_sufficient_days_of_data() - Assert that the vector of dates spans at least the specified calibration time
-
assert_ww_site_pops_lt_total() - Assert that the sum of the wastewater site populations don't exceed the total population
-
autoescape_brackets() - Escape brackets returned in a string for passing to glue
-
calc_rt() - Back- calculate R(t) from incident infections and the generation interval
-
compile_model() - Compile a stan model while pointing at the package default include directory (
stan) for #include statements
-
convert_to_logmean() - Get the mean of a Normal distribution for a random variable Y needed to ensure that the distribution of X = exp(Y) (which is Log-Normal) has a specified mean and sd.
-
convert_to_logsd() - Get the sd of a Normal distribution for a random variable Y needed to ensure that the distribution of X = exp(Y) (which is Log-Normal) has a specified mean and sd.
-
create_dir() - Create a new directory if one doesn't exist
-
create_site_lab_map() - Create a mapping of sites, labs, and population sizes in each site
-
default_covid_gi - COVID-19 post-Omicron generation interval probability mass function
-
default_covid_inf_to_hosp - COVID-19 time delay distribution from infection to hospital admission
-
downsample_for_frequency() - Downsample the predicted wastewater concentrations based on the lab site reporting frequency
-
drop_first_and_renormalize() - Drop the first element of a simplex and re-normalize the result to sum to 1.
-
flag_ww_outliers() - Flag WW outliers
-
format_hosp_data() - Format the hospital admissions data into a tidy dataframe
-
format_subpop_hosp_data() - Format the subpopulation-level hospital admissions data into a tidy dataframe
-
format_ww_data() - Format the wastewater data as a tidy data frame
-
generate_simulated_data() - Generate simulated data from the underlying model's generative process
-
get_count_data_sizes() - Get count data integer sizes for stan
-
get_count_indices() - Get count data indices
-
get_count_values() - Get count values
-
get_date_time_spine() - Get date time spine to map to model output
-
get_draws()get_draws_df()plot(<wwinference_fit_draws>) - Postprocess to generate a draws dataframe
-
get_global_rt() - Function to generate a global weekly R(t) estimate with added noise
-
get_ind_m() - Get index matrix
-
get_inits_for_one_chain() - Given a set of prior parameters and stan data, initialize the model near the center of the prior distribution
-
get_input_count_data_for_stan() - Get the input count data to pass directly to stan
-
get_input_ww_data_for_stan() - Get the input ww data passed directly to stan
-
get_lab_site_site_spine() - Get mapping from lab-site to site
-
get_lab_site_subpop_spine() - Get lab-site subpopulation spine
-
get_mcmc_options() - Get MCMC options
-
get_model_diagnostic_flags() - Get a table of diagnostic flags
-
get_model_spec() - Get model specifications
-
get_params() - Get parameters for model run
-
get_plot_forecasted_counts() - Get plot of fit and forecasted counts
-
get_plot_global_rt() - Get plot of fit, nowcasted, and forecasted "global" R(t)
-
get_plot_subpop_rt() - Get plot of fit, nowcasted, and forecasted R(t) in each subpopulation
-
get_plot_ww_conc() - Get plot of fit and forecasted wastewater concentrations
-
get_pred_obs_conc() - Get the predicted concentrations in each lab site
-
get_pred_subpop_gen_per_n() - Get the predicted genomes per person in each subpopulation
-
get_site_subpop_spine() - Get site to subpopulation map
-
get_stan_data() - Get stan data for ww + hosp model
-
get_time_varying_daily_ihr() - Get time varying IHR
-
get_ww_data_sizes() - Get the integer sizes of the wastewater input data
-
get_ww_indices_and_values() - Get wastewater indices and values for stan
-
hosp_data - Example hospital admissions dataset
-
hosp_data_eval - Example hospital admissions dataset for evaluation
-
indicate_ww_exclusions() - Indicate data that we want to exclude from model fitting
-
make_hospital_onset_delay_pmf() - Make hospital onset delay pmf
-
make_incubation_period_pmf() - Make incubation period pmf
-
make_reporting_delay_pmf() - Make reporting delay pmf
-
parameter_diagnostics() - Method for printing the CmdStan parameter diagnostics for a wwinference_fit_object
-
preprocess_count_data() - Pre-process hospital admissions data, converting column names to those that
get_stan_data()expects.
-
preprocess_ww_data() - Pre-process wastewater input data, adding needed indices and flagging potential outliers
-
simulate_double_censored_pmf() - Simulate daily double censored PMF. From epinowcast: https://package.epinowcast.org/dev/reference/simulate_double_censored_pmf.html #nolint
-
subpop_hosp_data - Example subpopulation level hospital admissions dataset
-
subpop_hosp_data_eval - Example subpopulation level retrospective hospital admissions dataset
-
subpop_inf_process() - Get the subpopulation level incident infections
-
subpop_rt_process() - Get subpopulation level R(t) estimates assuming time and space independence
-
summary_diagnostics() - Method for printing the CmdStan summary diagnostics for wwinference_fit_object
-
throw_type_error() - Throw an informative type error on a user-provided input
-
to_simplex() - Normalize vector to a simplex
-
true_global_rt - Global R(t) estimate dataset
-
truncate_for_latency() - Truncate the predicted wastewater concentrations based on the lab site reporting latency and the observed time and horizon time
-
validate_count_data() - Validate user-provided count data
-
validate_data_jointly() - Validate that both count data and wastewater data are coherent and compatible with one another and the the user-specified parameters
-
validate_paramlist() - Validate a parameter list
-
validate_pmf() - Validate that the pmf vector being passed to stan is a valid probability mass function. It must sum to 1 and have all non-negative entries.
-
validate_ww_conc_data() - Validate user-provided wastewater concentration data
-
ww_data - Example wastewater dataset.
-
ww_data_eval - Example evaluation wastewater dataset.
-
wwinference()print(<wwinference_fit>)summary(<wwinference_fit>) - Joint inference of count data (e.g. cases/admissions) and wastewater data