Distributions#
- class CensoredNormal(loc=0, scale=1, lower_limit=-inf, upper_limit=inf, validate_args=None)[source]#
Bases:
Distribution
Censored normal distribution under which samples are truncated to lie within a specified interval. This implementation is adapted from dylanhmorris/host-viral-determinants
- arg_constraints = {'loc': Real(), 'scale': Positive(lower_bound=0.0)}#
- log_prob(*args, **kwargs)#
Evaluates the log probability density for a batch of samples given by value.
- Parameters:
value – A batch of samples from the distribution.
- Returns:
an array with shape value.shape[:-self.event_shape]
- Return type:
- pytree_data_fields = ('loc', 'scale', 'lower_limit', 'upper_limit', '_support')#
- sample(key, sample_shape=())[source]#
Generates samples from the censored normal distribution.
- Returns:
Containing samples from the censored normal distribution.
- Return type:
Array
- property support#