dynode.utils.vis_utils.plot_prior_distributions#
- dynode.utils.vis_utils.plot_prior_distributions(priors: dict[str, Any], matplotlib_style: list[str] | str = ['seaborn-v0_8-colorblind'], num_samples=5000, hist_kwargs={'bins': 50, 'density': True}, median_line_kwargs={'label': 'prior median', 'linestyle': 'dotted', 'linewidth': 3}) Figure #
Visualize prior distributions by sampling from them and plotting the results.
Parameters#
- priorsdict[str, Any]
Dictionary with string keys and distribution objects as values. Each key with a distribution object will be included in the plot.
- matplotlib_stylelist[str] | str, optional
Matplotlib style to use for plotting; default is [“seaborn-v0_8-colorblind”].
- num_samplesint, optional
Number of times to sample each distribution; default is 5000.
- hist_kwargsdict[str: Any]
Additional kwargs passed to plt.hist(); default is {“bins”: 50}.
Returns#
- plt.Figure
Matplotlib figure containing all distribution keys found within priors.