dynode.utils.vis_utils.plot_model_overview_subplot_matplotlib#
- dynode.utils.vis_utils.plot_model_overview_subplot_matplotlib(timeseries_df: DataFrame, pop_sizes: dict[str, int], plot_types: ndarray = array(['seasonality_coef', 'vaccination_', '_external_introductions', '_strain_proportion', '_average_immunity', 'total_infection_incidence', 'pred_hosp_'], dtype='<U25'), plot_titles: ndarray = array(['Seasonality Coefficient', 'Vaccination Rate By Age', 'External Introductions by Strain (per 100k)', 'Strain Proportion of New Infections', 'Average Population Immunity Against Strains', 'Total Infection Incidence (per 100k)', 'Predicted Hospitalizations (per 100k)'], dtype='<U43'), plot_normalizations: ndarray = array([1, 1, 100000, 1, 1, 100000, 100000]), matplotlib_style: list[str] | str = ['seaborn-v0_8-colorblind']) Figure #
Generate an overview figure containing subplots for various model metrics.
Parameters#
- timeseries_dfpd.DataFrame
DataFrame containing at least [“date”, “chain_particle”, “region”] followed by columns for different time series to be plotted.
- pop_sizesdict[str, int]
Population sizes for each region as a dictionary. Keys must match the values in the “region” column of timeseries_df.
- plot_typesnp.ndarray[str], optional
Types of plots to be generated. Elements not found in timeseries_df are skipped.
- plot_titlesnp.ndarray[str], optional
Titles for each subplot corresponding to plot_types.
- plot_normalizationsnp.ndarray[int]
Normalization factors for each plot type.
- matplotlib_style: list[str] | str
Matplotlib style to use for plotting.
Returns#
- plt.Figure
Matplotlib Figure containing subplots with one column per region and one row per plot type.