Aggregate individual trajectory timeseries or forecasts to quantile timeseries or forecasts
Source:R/trajectories_to_quantiles.R
trajectories_to_quantiles.RdGiven a tidy data frame of trajectories, aggregate it to a quantile timeseries for the given quantile values
Usage
trajectories_to_quantiles(
trajectories,
quantiles = c(0.01, 0.025, 1:19/20, 0.975, 0.99),
timepoint_cols = "timepoint",
value_col = "value",
quantile_value_name = "quantile_value",
quantile_level_name = "quantile_level",
id_cols = NULL
)Arguments
- trajectories
Tidy data frame or tibble of trajectories
- quantiles
Quantiles to output for each timepoint (default the FluSight/COVIDHub 2024-25 quantiles:
c(0.01, 0.025, 1:19/20, 0.975, 0.99)- timepoint_cols
Name(s) of the column(s) in
trajectoriesthat identifies unique timepoints. Default"timepoint".- value_col
name of the column in
trajectorieswith the trajectory values (for which we wish to compute quantiles), e.g.hosp,weekly_hosp,cases, etc. Defaultvalue.- quantile_value_name
What to name the column containing quantile values in the output table. Default
"quantile_value"- quantile_level_name
What to name the column containing quantile levels in the output table. Default
"quantile_level"- id_cols
additional id columns in
trajectoriesto group by before aggregating, e.g. alocationcolumn iftrajectoriescontains trajectories over the same time period for multiple locations, such as different US States and Territories. If NULL, ignored. Default NULL.