API reference
gather_draws
gather_draws(
data: InferenceData,
group: str = "posterior",
combined: bool = True,
var_names: Iterable[str] | None = None,
filter_vars: str | None = None,
num_samples: int | None = None,
rng: bool | int | Generator | None = None,
value_name: str | None = None,
variable_name: str | None = None,
) -> DataFrame
Convert an ArviZ InferenceData object to a polars
DataFrame of tidy (gathered) draws, using the syntax of
arviz.extract
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
InferenceData
|
Data to convert. |
required |
group
|
str
|
|
'posterior'
|
combined
|
bool
|
|
True
|
var_names
|
Iterable[str] | None
|
|
None
|
filter_vars
|
str | None
|
|
None
|
num_samples
|
int | None
|
|
None
|
rng
|
bool | int | Generator | None
|
|
None
|
value_name
|
str | None
|
Name for the value column in the output DataFrame. if |
None
|
variable_name
|
str | None
|
Name for the variable column in the output DataFrame. if |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
The DataFrame of tidy (gathered) draws, including
standard columns to identify a unique sample
(typically |
Source code in polarbayes/gather.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
gather_variables
gather_variables(
data: LazyFrame | DataFrame,
index: ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None = None,
value_name: str | None = None,
variable_name: str | None = None,
)
Gather variable columns into key-value pairs.
Light wrapper of pl.DataFrame.unpivot
designed for use with
spread_draws
output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
LazyFrame | DataFrame
|
Input DataFrame to (un)pivot from wide to long format. |
required |
index
|
ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None
|
Polars expression selecting mandatory or optional columns to
index the gather. Passed as the |
None
|
value_name
|
str | None
|
Name for the value column in the output DataFrame.
If |
None
|
variable_name
|
str | None
|
Name for the variable column in the output DataFrame.
If |
None
|
Returns:
Type | Description |
---|---|
LazyFrame | DataFrame
|
Unpivoted (pivoted longer) tidy data frame with index columns plus variable name and value columns. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in polarbayes/gather.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
spread_draws
spread_draws(
data: InferenceData,
group: str = "posterior",
combined: bool = True,
var_names: Iterable[str] | None = None,
filter_vars: str | None = None,
num_samples: int | None = None,
rng: bool | int | Generator | None = None,
) -> DataFrame
Convert an ArviZ InferenceData object to a polars
DataFrame of tidy (spread) draws, using the syntax of
arviz.extract
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
InferenceData
|
Data to convert. |
required |
group
|
str
|
|
'posterior'
|
combined
|
bool
|
|
True
|
var_names
|
Iterable[str] | None
|
|
None
|
filter_vars
|
str | None
|
|
None
|
num_samples
|
int | None
|
|
None
|
rng
|
bool | int | Generator | None
|
|
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
The DataFrame of tidy draws. Consists of columns named for
variables and index columns. Columns named for variables
contain the sampled values of those variables. Index columns
include standard columns to identify a unique
sample (typically |
Source code in polarbayes/spread.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
spread_draws_and_get_index_cols
spread_draws_and_get_index_cols(
data: InferenceData,
group: str = "posterior",
combined: bool = True,
var_names: Iterable[str] | None = None,
filter_vars: str | None = None,
num_samples: int | None = None,
rng: bool | int | Generator | None = None,
enforce_drop_chain_draw: bool = False,
) -> tuple[DataFrame, tuple]
Convert an ArviZ InferenceData object to a polars DataFrame of tidy (spread) draws, using the syntax of arviz.extract. Return that DataFrame alongside a tuple giving the names of the DataFrame's index columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
InferenceData
|
Data to convert. |
required |
group
|
str
|
|
'posterior'
|
combined
|
bool
|
|
True
|
var_names
|
Iterable[str] | None
|
|
None
|
filter_vars
|
str | None
|
|
None
|
num_samples
|
int | None
|
|
None
|
rng
|
bool | int | Generator | None
|
|
None
|
Returns:
Type | Description |
---|---|
tuple[DataFrame, tuple]
|
Two-entry whose first entry is the DataFrame, and whose
second entry is a tuple giving the names of that DataFrame's
index columns. The DataFrame consists of columns named for
variables and index columns. Columns named for variables
contain the sampled values of those variables. Index columns
include standard columns to identify a unique
sample (typically |
Source code in polarbayes/spread.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|