CloudClient API Reference¶
cfa.cloudops.CloudClient
¶
High-level client for managing Azure Batch resources and operations.
CloudClient provides a simplified interface for creating and managing Azure Batch pools, jobs, and tasks. It handles authentication, client initialization, and provides convenient methods for common batch operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dotenv_path
|
str
|
Path to .env file containing environment variables. If None, uses default .env file discovery. Default is None. |
None
|
use_sp
|
bool
|
Whether to use Service Principal authentication (True) or environment-based authentication (False). Default is False. |
False
|
**kwargs
|
Additional keyword arguments passed to the credential handler. |
{}
|
Attributes:
Name | Type | Description |
---|---|---|
cred |
Credential handler (EnvCredentialHandler, SPCredentialHandler, or FederatedCredentialHandler) |
|
batch_mgmt_client |
Azure Batch management client |
|
compute_mgmt_client |
Azure Compute management client |
|
batch_service_client |
Azure Batch service client |
|
blob_service_client |
Azure Blob storage client |
|
pool_name |
str
|
Name of the most recently created or used pool |
save_logs_to_blob |
str
|
Blob container name for saving task logs |
logs_folder |
str
|
Folder path within blob container for logs |
task_id_ints |
bool
|
Whether to use integer task IDs |
task_id_max |
int
|
Maximum task ID when using integer IDs |
Example
Create a client with environment-based authentication:
client = CloudClient()
Create a client with Service Principal authentication:
client = CloudClient(
use_sp=True,
dotenv_path="/path/to/.env"
)
Create a client with custom configuration:
client = CloudClient(
azure_tenant_id="custom-tenant-id",
azure_subscription_id="custom-sub-id"
)
Source code in cfa/cloudops/_cloudclient.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 |
|
add_task(job_name, command_line, name_suffix='', depends_on=None, depends_on_range=None, run_dependent_tasks_on_fail=False, container_image_name=None, timeout=None)
¶
Add a task to an Azure Batch job.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Name of the job to add the task to. |
required |
command_line
|
list[str]
|
Command line arguments for the task. |
required |
name_suffix
|
str
|
Suffix to append to the task ID. |
''
|
depends_on
|
list[str]
|
List of task IDs this task depends on. |
None
|
depends_on_range
|
tuple
|
Range of task IDs this task depends on. |
None
|
run_dependent_tasks_on_fail
|
bool
|
Whether to run dependent tasks if this task fails. |
False
|
container_image_name
|
str
|
Container image to use for the task. |
None
|
timeout
|
int
|
Maximum time in minutes for the task to run. |
None
|
Source code in cfa/cloudops/_cloudclient.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
|
add_tasks_from_yaml(job_name, base_cmd, file_path, **kwargs)
¶
Add multiple tasks to a job from a YAML file.
Reads a YAML file describing tasks, constructs the corresponding commands, and submits each as a task to the specified job. Returns the list of created task IDs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
ID of the job to add tasks to. The job must exist. |
required |
base_cmd
|
str
|
Base command to prepend to each task command from the YAML file. |
required |
file_path
|
str
|
Path to the YAML file describing the tasks. |
required |
**kwargs
|
Additional keyword arguments passed to add_task(). |
{}
|
Returns:
Type | Description |
---|---|
list[str]
|
list[str]: List of task IDs created from the YAML file. |
Example
Add tasks from a YAML file:
client = CloudClient()
task_ids = client.add_tasks_from_yaml(
job_name="my-job",
base_cmd="python run.py",
file_path="tasks.yaml"
)
print(f"Added {len(task_ids)} tasks from YAML.")
Note
The YAML file should define the commands or parameters for each task. The base_cmd is prepended to each command from the YAML file.
Source code in cfa/cloudops/_cloudclient.py
check_job_status(job_name)
¶
Check the current status and progress of an Azure Batch job.
Performs a comprehensive status check of a job including existence verification, task completion counts, and overall job state. Provides detailed logging of the job's current status without blocking execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Name/ID of the job to check. The job may or may not exist. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
job status info |
Example
Check status of a running job:
client = CloudClient()
client.check_job_status("data-processing-job")
Check multiple jobs in a loop:
job_names = ["job-1", "job-2", "job-3"]
for job_name in job_names:
client.check_job_status(job_name)
Note
This method is non-blocking and provides a point-in-time status check. For continuous monitoring, use monitor_job() instead. Status information is logged at info level and printed to the console.
Source code in cfa/cloudops/_cloudclient.py
create_blob_container(name)
¶
Create a blob storage container if it doesn't already exist.
Creates a new Azure Blob Storage container with the specified name. If the container already exists, this operation completes successfully without error.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the blob storage container to create. Must follow Azure naming conventions: lowercase letters, numbers, and hyphens only, must start and end with letter or number, 3-63 characters long. |
required |
Example
Create a container for storing input data:
client = CloudClient()
client.create_blob_container("input-data")
Create a container for job outputs:
client.create_blob_container("job-results-2024")
Note
Container names must be globally unique within the storage account and follow Azure naming rules. The operation is idempotent - calling it multiple times with the same name is safe.
Source code in cfa/cloudops/_cloudclient.py
create_job(job_name, pool_name, uses_deps=True, save_logs_to_blob=None, logs_folder=None, task_retries=0, mark_complete_after_tasks_run=False, task_id_ints=False, timeout=None, exist_ok=False, verify_pool=True, verbose=False)
¶
Create a job in Azure Batch to run tasks on a specified pool.
A job is a collection of tasks that run on compute nodes in a pool. Jobs provide a way to organize and manage related tasks, handle dependencies, and control task execution settings. Tasks are added to the job after it's created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Unique identifier for the job. Must be unique within the Batch account. Can contain letters, numbers, hyphens, and underscores. Cannot exceed 64 characters. Spaces will be automatically removed. |
required |
pool_name
|
str
|
Name of the pool where the job's tasks will run. The pool must already exist and be in an active state. |
required |
uses_deps
|
bool
|
Whether to enable task dependencies for this job. When True, tasks can specify dependencies on other tasks within the same job. Default is True. |
True
|
save_logs_to_blob
|
str
|
Azure Blob Storage container name where task logs should be saved. If provided, stdout and stderr from tasks will be automatically uploaded to this container. Default is None (logs not saved to blob). |
None
|
logs_folder
|
str
|
Folder path within the blob container where logs should be stored. Only used when save_logs_to_blob is specified. Leading and trailing slashes are automatically handled. Default is "stdout_stderr". |
None
|
task_retries
|
int
|
Maximum number of times a task can be retried if it fails. Tasks will be retried automatically up to this limit. Valid range: 0-100. Default is 0 (no retries). |
0
|
mark_complete_after_tasks_run
|
bool
|
Whether to automatically mark the job as complete after all tasks finish. When True, the job will be marked complete without requiring explicit job termination. Default is False. |
False
|
task_id_ints
|
bool
|
Whether to use integer task IDs instead of string IDs. When True, tasks added to this job should use integer IDs for better performance with large numbers of tasks. Default is False (use string IDs). |
False
|
timeout
|
int
|
Maximum time in minutes that the job can run before being terminated. If None, no timeout is set and the job can run indefinitely. Default is None (no timeout). |
None
|
exist_ok
|
bool
|
Whether to allow the job creation if a job with the same name already exists. Default is False. |
False
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If the job creation fails due to Azure Batch service errors, authentication issues, or invalid parameters. |
ValueError
|
If the job_name or pool_name are invalid, or if the specified pool does not exist. |
Example
Create a simple job with default settings:
client = CloudClient()
client.create_job(
job_name="data-processing-job",
pool_name="compute-pool"
)
Create a job with dependencies, retries, and log saving:
client.create_job(
job_name="pipeline-job",
pool_name="compute-pool",
uses_deps=True,
task_retries=3,
save_logs_to_blob="job-logs",
logs_folder="pipeline-logs/run-001",
timeout=120, # 2 hours
mark_complete_after_tasks_run=True
)
Create a job optimized for many tasks:
client.create_job(
job_name="bulk-processing",
pool_name="large-pool",
task_id_ints=True, # Better performance for many tasks
save_logs_to_blob="bulk-logs",
exist_ok=True
)
Note
- The job must be created before adding tasks to it
- Task dependencies only work when uses_deps=True
- If save_logs_to_blob is specified, ensure the blob container exists
- Job names are automatically cleaned of spaces
Source code in cfa/cloudops/_cloudclient.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
create_pool(pool_name, mounts=None, container_image_name=None, vm_size=d.default_vm_size, autoscale=True, autoscale_formula='default', dedicated_nodes=0, low_priority_nodes=1, max_autoscale_nodes=3, task_slots_per_node=1, availability_zones='regional', cache_blobfuse=True)
¶
Create a pool in Azure Batch with the specified configuration.
A pool is a collection of compute nodes (virtual machines) on which your tasks run. This function creates a new pool with configurable scaling, container support, storage mounts, and availability zone placement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pool_name
|
str
|
Name of the pool to create. Must be unique within the Batch account. |
required |
mounts
|
list
|
List of mount configurations as tuples of (storage_container, mount_name). Each tuple specifies a blob storage container to mount and the local mount point name. |
None
|
container_image_name
|
str
|
Docker container image name to use for tasks. Should be in the format "registry/image:tag" or just "image:tag" for Docker Hub. |
None
|
vm_size
|
str
|
Azure VM size for the pool nodes (e.g., "Standard_D4s_v3"). Defaults to the value from defaults module. |
default_vm_size
|
autoscale
|
bool
|
Whether to enable autoscaling (True) or use fixed scaling (False). Default is True. |
True
|
autoscale_formula
|
str
|
Autoscale formula to use when autoscale=True. Use "default" for the built-in formula or provide a custom Azure Batch autoscale formula. Default is "default". |
'default'
|
dedicated_nodes
|
int
|
Number of dedicated nodes when autoscale=False. Only used for fixed scaling. Default is 0. |
0
|
low_priority_nodes
|
int
|
Number of low-priority nodes when autoscale=False. Low-priority nodes are cheaper but can be preempted. Default is 1. |
1
|
max_autoscale_nodes
|
int
|
Maximum number of nodes for autoscaling. Only used when autoscale=True. Default is 3. |
3
|
task_slots_per_node
|
int
|
Number of task slots per node. Determines how many tasks can run concurrently on each node. Default is 1. |
1
|
availability_zones
|
str
|
Availability zone placement policy. Must be either "regional" for regional deployment or "zonal" for zone-aware deployment. Default is "regional". |
'regional'
|
cache_blobfuse
|
bool
|
Whether to enable blobfuse caching for mounted storage. Improves performance for read-heavy workloads. Default is True. |
True
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If the pool creation fails due to Azure Batch service errors, authentication issues, or invalid parameters. |
ValueError
|
If availability_zones is not "regional" or "zonal", or if other parameters have invalid values. |
Example
Create a simple autoscaling pool:
client = CloudClient()
client.create_pool(
pool_name="my-compute-pool",
container_image_name="myapp:latest",
vm_size="Standard_D2s_v3"
)
Create a pool with storage mounts and fixed scaling:
client.create_pool(
pool_name="data-processing-pool",
container_image_name="python:3.9",
vm_size="Standard_D4s_v3",
mounts=[("input-data", "data"), ("output-results", "results")],
autoscale=False,
dedicated_nodes=5,
availability_zones="zonal"
)
Note
The pool must be created before jobs can be submitted to it. Ensure that the specified VM size is available in your Azure region and that any container images are accessible from the compute nodes.
Source code in cfa/cloudops/_cloudclient.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
delete_blob_file(blob_name, container_name)
¶
Delete a specific file from Azure Blob Storage.
Permanently removes a file and all its snapshots from the specified blob storage container. This operation cannot be undone.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
blob_name
|
str
|
Name/path of the blob file to delete within the container. Should include any directory structure (e.g., "data/file.txt"). |
required |
container_name
|
str
|
Name of the blob storage container containing the file. |
required |
Example
Delete a specific output file:
client = CloudClient()
client.delete_blob_file(
blob_name="results/output.csv",
container_name="job-outputs"
)
Delete a log file:
client.delete_blob_file(
blob_name="logs/job-123.log",
container_name="system-logs"
)
Warning
This operation permanently deletes the file and all its snapshots. Ensure you have backed up any important data before deletion.
Source code in cfa/cloudops/_cloudclient.py
delete_blob_folder(folder_path, container_name)
¶
Delete an entire folder and all its contents from Azure Blob Storage.
Recursively removes all files within the specified folder path from the blob storage container. This operation deletes all files that have the folder path as a prefix in their blob names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder_path
|
str
|
Path of the folder to delete within the container. Should be the folder prefix (e.g., "data/temp" will delete all blobs starting with "data/temp/"). |
required |
container_name
|
str
|
Name of the blob storage container containing the folder. |
required |
Example
Delete a temporary data folder:
client = CloudClient()
client.delete_blob_folder(
folder_path="temp/job-123",
container_name="workspace"
)
Delete all log files from a specific run:
client.delete_blob_folder(
folder_path="logs/2024-01-15",
container_name="system-logs"
)
Warning
This operation permanently deletes all files within the specified folder. There is no way to recover deleted files. Ensure you have backed up any important data before deletion.
Source code in cfa/cloudops/_cloudclient.py
delete_job(job_name)
¶
Delete an Azure Batch job and all its associated tasks.
Permanently removes a job from the Batch account. This operation also deletes all tasks associated with the job and any stored task execution data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Name/ID of the job to delete. The job must exist. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the job deletion fails due to Azure Batch service errors or if the job does not exist. |
Example
Delete a completed job:
client = CloudClient()
client.delete_job("completed-job")
Clean up multiple jobs:
job_names = ["old-job-1", "old-job-2", "failed-job"]
for job_name in job_names:
try:
client.delete_job(job_name)
print(f"Deleted {job_name}")
except RuntimeError as e:
print(f"Failed to delete {job_name}: {e}")
Warning
This operation is irreversible. All task data, logs, and job metadata will be permanently lost. Ensure you have downloaded any needed outputs or logs before deleting the job.
Source code in cfa/cloudops/_cloudclient.py
delete_pool(pool_name)
¶
Delete an Azure Batch pool and all its compute nodes.
Permanently removes a pool from the Batch account. This operation stops all running tasks on the pool's nodes and deallocates all compute resources.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pool_name
|
str
|
Name of the pool to delete. The pool must exist. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the pool deletion fails due to Azure Batch service errors or if the pool does not exist. |
Example
Delete a completed pool:
client = CloudClient()
client.delete_pool("old-compute-pool")
Clean up test pools:
test_pools = ["test-pool-1", "test-pool-2"]
for pool_name in test_pools:
try:
client.delete_pool(pool_name)
print(f"Deleted pool: {pool_name}")
except RuntimeError as e:
print(f"Failed to delete {pool_name}: {e}")
Warning
This operation is irreversible and will terminate any running tasks. Ensure all important work is complete before deleting the pool. Pool deletion may take several minutes to complete.
Source code in cfa/cloudops/_cloudclient.py
download_after_job(job_name, blob_paths, target, container_name, **kwargs)
¶
Download files or directories from blob storage after a job completes.
Waits for the specified job to complete, then downloads the specified files or directories from blob storage to a local target directory. Handles both single files and directories.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Name/ID of the job to monitor for completion. |
required |
blob_paths
|
list[str]
|
List of blob paths (files or directories) to download. |
required |
target
|
str
|
Local directory where files/directories will be downloaded. |
required |
container_name
|
str
|
Name of the blob storage container containing the files. |
required |
**kwargs
|
Additional keyword arguments passed to download_folder(). |
{}
|
Example
Download results after job completion:
client = CloudClient()
client.download_after_job(
job_name="my-job",
blob_paths=["results/output.csv", "logs/"],
target="./outputs",
container_name="job-outputs"
)
Note
This method blocks until the job completes. Files are downloaded to the specified target directory, preserving directory structure for folders.
Source code in cfa/cloudops/_cloudclient.py
download_file(src_path, dest_path, container_name=None, do_check=True, check_size=True)
¶
Download a single file from Azure Blob Storage to the local filesystem.
Downloads a file from a blob storage container to a local destination path. Supports verification of the download to ensure data integrity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_path
|
str
|
Path of the file within the blob container to download. Should be the full blob path including any directory structure. |
required |
dest_path
|
str
|
Local filesystem path where the file should be saved. Can be relative or absolute. Parent directories will be created if needed. |
required |
container_name
|
str
|
Name of the blob storage container containing the file. If None, uses the default container associated with the client. |
None
|
do_check
|
bool
|
Whether to perform verification checks after download. Default is True. |
True
|
check_size
|
bool
|
Whether to verify that the downloaded file size matches the source file size. Only used if do_check is True. Default is True. |
True
|
Example
Download a file with default settings:
client = CloudClient()
client.download_file(
src_path="data/results.csv",
dest_path="./local_results.csv",
container_name="job-outputs"
)
Download without verification:
client.download_file(
src_path="logs/job.log",
dest_path="/tmp/job.log",
container_name="job-logs",
do_check=False
)
Note
If the destination directory doesn't exist, it will be created automatically. The download will overwrite any existing file at the destination path.
Source code in cfa/cloudops/_cloudclient.py
download_folder(src_path, dest_path, container_name, include_extensions=None, exclude_extensions=None, verbose=True, check_size=True)
¶
Download an entire folder from Azure Blob Storage to the local filesystem.
Recursively downloads all files from a directory in a blob storage container, preserving the directory structure. Supports filtering by file extensions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_path
|
str
|
Path of the directory within the blob container to download. Should be the directory path within the container (e.g., "data/outputs"). |
required |
dest_path
|
str
|
Local filesystem path where the directory should be saved. The directory structure will be recreated under this path. |
required |
container_name
|
str
|
Name of the blob storage container containing the directory. |
required |
include_extensions
|
str | list
|
File extensions to include in the download. Can be a single extension string (e.g., ".csv") or list of extensions (e.g., [".csv", ".json"]). If None, all files are included. |
None
|
exclude_extensions
|
str | list
|
File extensions to exclude from the download. Can be a single extension string or list. Takes precedence over include_extensions if a file matches both. |
None
|
verbose
|
bool
|
Whether to print progress information during download. Default is True. |
True
|
check_size
|
bool
|
Whether to verify that downloaded file sizes match the source file sizes. Default is True. |
True
|
Example
Download entire results directory:
client = CloudClient()
client.download_folder(
src_path="job-123/outputs",
dest_path="./results",
container_name="job-outputs"
)
Download only specific file types:
client.download_folder(
src_path="logs",
dest_path="./local_logs",
container_name="job-logs",
include_extensions=[".log", ".txt"],
exclude_extensions=[".tmp"],
verbose=False
)
Note
The destination folder will be created if it doesn't exist. The source folder structure is preserved in the destination. Large downloads may take considerable time depending on file sizes and network speed.
Source code in cfa/cloudops/_cloudclient.py
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 |
|
download_job_stats(job_name, file_name=None)
¶
Download job statistics for a completed Azure Batch job.
Downloads detailed statistics for all tasks in the specified job and saves them to a CSV file. The statistics include task execution times, exit codes, and node info.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
Name of the job to download statistics for. The job must exist. |
required |
file_name
|
str
|
Name of the output CSV file (without extension). If None, defaults to "{job_name}-stats.csv". |
None
|
Example
Download stats for a job:
client = CloudClient()
client.download_job_stats(job_name="my-job")
Download with custom filename:
client.download_job_stats(job_name="my-job", file_name="run42_stats")
Note
The CSV file will be created in the current working directory. The job must be completed before statistics are available for all tasks.
Source code in cfa/cloudops/_cloudclient.py
list_blob_files(blob_container=None)
¶
List all files in blob storage containers associated with the client.
Retrieves a list of all blob files from either a specified container or from all containers associated with the client's mounts. This is useful for discovering available data files before processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
blob_container
|
str
|
Name of a specific blob storage container to list files from. If None, will list files from all containers in the client's mounts. Default is None. |
None
|
Returns:
Type | Description |
---|---|
list[str] | None: List of blob file paths found in the container(s). Returns None if no container is specified and no mounts are configured. |
Example
List files from a specific container:
client = CloudClient()
files = client.list_blob_files("input-data")
print(f"Found {len(files)} files: {files}")
List files from all mounted containers:
files = client.list_blob_files()
if files:
print(f"Total files across all mounts: {len(files)}")
Note
Either blob_container must be specified or the client must have mounts configured. If neither condition is met, a warning is logged and None is returned.
Source code in cfa/cloudops/_cloudclient.py
monitor_job(job_name, timeout=None, download_job_stats=False)
¶
Monitor the execution of tasks in an Azure Batch job.
Continuously monitors the progress of all tasks in a job until they complete or a timeout is reached. Provides real-time status updates and optionally downloads job statistics when complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
ID of the job to monitor. The job must exist and be in an active state. |
required |
timeout
|
int
|
Maximum time in minutes to monitor the job before giving up. If None, monitoring continues indefinitely until all tasks complete. |
None
|
download_job_stats
|
bool
|
Whether to download comprehensive job statistics when the job completes. Statistics include task execution times, resource usage, and success/failure rates. Default is False. |
False
|
Example
Monitor a job with default settings:
client = CloudClient()
client.monitor_job("data-processing-job")
Monitor with timeout and statistics download:
client.monitor_job(
job_name="long-running-job",
timeout=120, # 2 hours in minutes
download_job_stats=True
)
Note
This method blocks until the job completes or times out. For non-blocking job status checks, use check_job_status() instead. Job statistics are saved to the current working directory when downloaded.
Source code in cfa/cloudops/_cloudclient.py
package_and_upload_dockerfile(registry_name, repo_name, tag, path_to_dockerfile='./Dockerfile', use_device_code=False)
¶
Build a Docker image from a Dockerfile and upload it to Azure Container Registry.
Takes a Dockerfile, builds it into a Docker image, and uploads the resulting image to the specified Azure Container Registry. This is useful for creating custom container images for Azure Batch tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
registry_name
|
str
|
Name of the Azure Container Registry (without .azurecr.io). The registry must already exist and be accessible. |
required |
repo_name
|
str
|
Name of the repository within the container registry where the image will be stored. |
required |
tag
|
str
|
Tag to assign to the uploaded Docker image (e.g., "latest", "v1.0"). |
required |
path_to_dockerfile
|
str
|
Path to the Dockerfile to build. Can be relative or absolute. Default is "./Dockerfile" (Dockerfile in current directory). |
'./Dockerfile'
|
use_device_code
|
bool
|
Whether to use device code authentication for Azure CLI login during the upload process. Useful for environments without a web browser. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Full container image name that was uploaded, in the format "registry.azurecr.io/repo:tag". |
Example
Build and upload from default Dockerfile:
client = CloudClient()
image_name = client.package_and_upload_dockerfile(
registry_name="myregistry",
repo_name="batch-app",
tag="v1.0"
)
print(f"Uploaded: {image_name}")
Build from custom Dockerfile location:
image_name = client.package_and_upload_dockerfile(
registry_name="myregistry",
repo_name="data-processor",
tag="latest",
path_to_dockerfile="./docker/worker/Dockerfile",
use_device_code=True
)
Note
This method requires Docker to be installed and the Azure CLI to be available and authenticated. The resulting image name is stored in self.full_container_name for later use.
Source code in cfa/cloudops/_cloudclient.py
run_dag(*args, job_name, **kwargs)
¶
Run a set of tasks as a directed acyclic graph (DAG) in the correct order.
Accepts multiple Task objects, determines their execution order using topological sorting, and submits them to Azure Batch as a dependency graph. Raises an error if the tasks do not form a valid DAG.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Task
|
batch_helpers.Task objects representing tasks and their dependencies. |
()
|
job_name
|
str
|
Name/ID of the job to add tasks to. |
required |
**kwargs
|
Additional keyword arguments passed to add_task(). |
{}
|
Raises:
Type | Description |
---|---|
CycleError
|
If the submitted tasks do not form a valid DAG (contain cycles). |
Example
Run a DAG of tasks:
client = CloudClient()
client.create_job("dag_job", pool_name = "test_pool")
t1 = Task("python step1.py")
t2 = Task("python step2.py")
t3 = Task("python step3.py")
t4 = Task("python step4.py")
t2.after(t1)
t3.after(t1)
t4.after([t2, t3])
client.run_dag(t1, t2, t3, t4, job_name="dag_job")
Note
The tasks must form a valid DAG (no cycles). Task dependencies are resolved automatically and tasks are submitted in the correct order. Task IDs and dependencies are updated as tasks are submitted.
Source code in cfa/cloudops/_cloudclient.py
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 |
|
upload_docker_image(image_name, registry_name, repo_name, tag, use_device_code=False)
¶
Upload an existing Docker image to Azure Container Registry.
Takes a Docker image that already exists locally and uploads it to the specified Azure Container Registry. This is useful when you have pre-built images that you want to use for Azure Batch tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_name
|
str
|
Name of the local Docker image to upload. Should be the full image name as it appears in "docker images" output. |
required |
registry_name
|
str
|
Name of the Azure Container Registry (without .azurecr.io). The registry must already exist and be accessible. |
required |
repo_name
|
str
|
Name of the repository within the container registry where the image will be stored. |
required |
tag
|
str
|
Tag to assign to the uploaded Docker image (e.g., "latest", "v1.0"). |
required |
use_device_code
|
bool
|
Whether to use device code authentication for Azure CLI login during the upload process. Useful for environments without a web browser. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Full container image name that was uploaded, in the format "registry.azurecr.io/repo:tag". |
Example
Upload a locally built image:
client = CloudClient()
image_name = client.upload_docker_image(
image_name="my-local-app:latest",
registry_name="myregistry",
repo_name="batch-app",
tag="v1.0"
)
Upload with device code authentication:
image_name = client.upload_docker_image(
image_name="data-processor:dev",
registry_name="myregistry",
repo_name="processors",
tag="development",
use_device_code=True
)
Note
This method requires Docker to be installed and the Azure CLI to be available and authenticated. The local image must exist before calling this method. The resulting image name is stored in self.full_container_name.
Source code in cfa/cloudops/_cloudclient.py
upload_files(files, container_name, local_root_dir='.', location_in_blob='.')
¶
Upload files to an Azure Blob Storage container.
Uploads one or more files from the local filesystem to a blob storage container. The files maintain their relative directory structure within the container.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
files
|
str | list[str]
|
Path(s) to file(s) to upload. Can be a single file path as a string or a list of file paths. Paths can be relative or absolute. |
required |
container_name
|
str
|
Name of the blob storage container to upload to. The container must already exist. |
required |
local_root_dir
|
str
|
Local directory to use as the base path for relative file paths. Files will be uploaded relative to this directory. Default is "." (current directory). |
'.'
|
location_in_blob
|
str
|
Remote directory path within the blob container where files should be uploaded. Default is "." (container root). |
'.'
|
Example
Upload a single file:
client = CloudClient()
client.upload_files(
files="data/input.csv",
container_name="job-data"
)
Upload multiple files with custom paths:
client.upload_files(
files=["config.json", "scripts/process.py", "data/input.txt"],
container_name="job-data",
local_root_dir="/home/user/project",
location_in_blob="job-123"
)
Note
The blob container must exist before uploading files. Use create_blob_container() to create it if needed. Files are uploaded with their directory structure preserved.
Source code in cfa/cloudops/_cloudclient.py
upload_folders(folder_names, container_name, include_extensions=None, exclude_extensions=None, exclude_patterns=None, location_in_blob='.', force_upload=False)
¶
Upload entire folders to an Azure Blob Storage container with filtering options.
Recursively uploads all files from specified folders to a blob storage container. Supports filtering by file extensions and patterns to control which files are uploaded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder_names
|
list[str]
|
List of local folder paths to upload. Each folder will be recursively uploaded with its directory structure preserved. |
required |
container_name
|
str
|
Name of the blob storage container to upload to. The container must already exist. |
required |
include_extensions
|
str | list
|
File extensions to include in the upload. Can be a single extension string (e.g., ".py") or list of extensions (e.g., [".py", ".txt"]). If None, all extensions are included. |
None
|
exclude_extensions
|
str | list
|
File extensions to exclude from the upload. Can be a single extension string or list. Takes precedence over include_extensions if a file matches both. |
None
|
exclude_patterns
|
str | list
|
Filename patterns to exclude using glob-style matching (e.g., "*.tmp", "pycache"). Can be a single pattern string or list of patterns. |
None
|
location_in_blob
|
str
|
Remote directory path within the blob container where folders should be uploaded. Default is "." (container root). |
'.'
|
force_upload
|
bool
|
Whether to force upload files even if they already exist in the container with the same size. Default is False (skip existing files with same size). |
False
|
Returns:
Type | Description |
---|---|
list[str]
|
list[str]: List of file paths that were successfully uploaded to the container. |
Example
Upload Python source folders:
client = CloudClient()
uploaded_files = client.upload_folders(
folder_names=["src", "tests"],
container_name="code-repo",
include_extensions=[".py", ".yaml"],
exclude_patterns=["__pycache__", "*.pyc"]
)
Upload data folders with custom location:
uploaded_files = client.upload_folders(
folder_names=["data/input", "data/config"],
container_name="job-data",
location_in_blob="run-001",
exclude_extensions=[".tmp", ".log"],
force_upload=True
)
Note
The blob container must exist before uploading. Directory structure is preserved in the container. Use filtering options to avoid uploading unnecessary files like temporary files or build artifacts.
Source code in cfa/cloudops/_cloudclient.py
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
|