Public Documentation
Documentation for EpiInference.jl's public interface.
See the Internals section of the manual for internal package docs covering all submodules.
Contents
Index
EpiAware.EpiInferenceEpiAware.EpiInference.ManyPathfinderEpiAware.EpiInference.NUTSamplerEpiAware.EpiInference.manypathfinder
Public API
EpiAware.EpiInference — ModuleModule for defining inference methods.
EpiAware.EpiInference.ManyPathfinder — Typestruct ManyPathfinder <: AbstractEpiOptMethodA variational inference method that runs manypathfinder.
Fields
ndraws::Int64: Number of draws per pathfinder run.nruns::Int64: Number of many pathfinder runs.maxiters::Int64: Maximum number of optimization iterations for each run.max_tries::Int64: Maximum number of tries if all runs fail.
EpiAware.EpiInference.NUTSampler — Typestruct NUTSampler{A<:ADTypes.AbstractADType, E<:AbstractMCMC.AbstractMCMCEnsemble, M} <: AbstractEpiSamplingMethodA NUTS method for sampling from a DynamicPPL.Model object.
The NUTSampler struct represents using the No-U-Turn Sampler (NUTS) to sample from the distribution defined by a DynamicPPL.Model.
Fields
target_acceptance::Float64: The target acceptance rate for the sampler.adtype::ADTypes.AbstractADType: The automatic differentiation type used for computing gradients.mcmc_parallel::AbstractMCMC.AbstractMCMCEnsemble: The parallelization strategy for the MCMC sampler.nchains::Int64: The number of MCMC chains to run.max_depth::Int64: Tree depth limit for the NUTS sampler.Δ_max::Float64: Divergence threshold for the NUTS sampler.init_ϵ::Float64: The initial step size for the NUTS sampler.ndraws::Int64: The number of samples to draw from each chain.metricT::Any: The metric type to use for the HMC sampler.nadapts::Int64: number of adaptation steps
EpiAware.EpiInference.manypathfinder — Methodmanypathfinder(
mdl::DynamicPPL.Model,
ndraws;
nruns,
maxiters,
max_tries,
kwargs...
) -> Any
Run multiple instances of the pathfinder algorithm and returns the pathfinder run with the largest ELBO estimate.
Arguments
mdl::DynamicPPL.Model: The model to perform inference on.nruns::Int: The number of pathfinder runs to perform.ndraws::Int: The number of draws per pathfinder run, readjusted to be at least as large as the number of chains.nchains::Int: The number of chains that will be initialised by pathfinder draws.maxiters::Int: The maximum number of optimizer iterations per pathfinder run.max_tries::Int: The maximum number of extra tries to find a valid pathfinder result.kwargs...: Additional keyword arguments passed topathfinder.
Returns
best_pfs::PathfinderResult: Best pathfinder result by estimated ELBO.