Public Documentation
Documentation for EpiAwareBae.jl
's public interface.
See the Internals section of the manual for internal package docs covering all submodules.
Contents
Index
EpiAware.EpiAwareUtils
EpiAware.EpiAwareUtils.DirectSample
EpiAware.EpiAwareUtils.HalfNormal
EpiAware.EpiAwareUtils.SafeDiscreteUnivariateDistribution
EpiAware.EpiAwareUtils.SafeIntValued
EpiAware.EpiAwareUtils.SafeNegativeBinomial
EpiAware.EpiAwareUtils.SafePoisson
EpiAware.EpiAwareUtils.accumulate_scan
EpiAware.EpiAwareUtils.censored_cdf
EpiAware.EpiAwareUtils.censored_pmf
EpiAware.EpiAwareUtils.censored_pmf
EpiAware.EpiAwareUtils.get_param_array
EpiAware.EpiAwareUtils.get_state
EpiAware.EpiAwareUtils.prefix_submodel
EpiAware.EpiAwareUtils.spread_draws
EpiAware.EpiAwareUtils.∫F
Public API
EpiAware.EpiAwareUtils
— ModuleModule for defining utility functions.
EpiAware.EpiAwareUtils.DirectSample
— Typestruct DirectSample <: AbstractEpiSamplingMethod
Sample directly from a Turing
model.
Fields
n_samples::Union{Nothing, Int64}
: Number of samples from a model. If an integer is provided, the model is sampledn_samples
times usingTuring.Prior()
returning anMCMChains. Chain
object. Ifnothing
, the model is sampled once returning aNamedTuple
object of the sampled random variables along with generated quantities
EpiAware.EpiAwareUtils.HalfNormal
— Typestruct HalfNormal{T<:Real} <: Distributions.Distribution{Distributions.Univariate, Distributions.Continuous}
Create a half-normal prior distribution with the specified mean.
Arguments:
μ
: The mean of the half-normal distribution.
Returns:
- A
HalfNormal
distribution with the specified mean.
Examples:
using EpiAware, Distributions
hn = HalfNormal(1.0)
nothing
rand(hn)
nothing
cdf(hn, 2)
nothing
quantile(hn, 0.5)
nothing
logpdf(hn, 2)
nothing
mean(hn)
nothing
var(hn)
nothing
Fields
μ::Real
EpiAware.EpiAwareUtils.SafeDiscreteUnivariateDistribution
— TypeA constant alias for Distribution{Univariate, SafeIntValued}
. This type represents a univariate distribution with real-valued outcomes.
EpiAware.EpiAwareUtils.SafeIntValued
— Typestruct SafeIntValued <: Distributions.ValueSupport
A type to represent real-valued distributions, the purpose of this type is to avoid problems with the eltype
function when having rand
calls in the model.
Fields
EpiAware.EpiAwareUtils.SafeNegativeBinomial
— Typestruct SafeNegativeBinomial{T<:Real} <: Distributions.UnivariateDistribution{SafeIntValued}
Create a Negative binomial distribution with the specified mean that avoids InExactError
when the mean is too large.
Parameterisation:
We are using a mean and cluster factorization of the negative binomial distribution such that the variance to mean relationship is:
\[\sigma^2 = \mu + \alpha^2 \mu^2\]
The reason for this parameterisation is that at sufficiently large mean values (i.e. r > 1 / p
) p
is approximately equal to the standard fluctuation of the distribution, e.g. if p = 0.05
we expect typical fluctuations of samples from the negative binomial to be about 5% of the mean when the mean is notably larger than 20. Otherwise, we expect approximately Poisson noise. In our opinion, this parameterisation is useful for specifying the distribution in a way that is easier to reason on priors for p
.
Arguments:
r
: The number of successes, although this can be extended to a continous number.p
: Success rate.
Returns:
- A
SafeNegativeBinomial
distribution with the specified mean.
Examples:
using EpiAware, Distributions
bigμ = exp(48.0) #Large value of μ
σ² = bigμ + 0.05 * bigμ^2 #Large variance
# We can calculate the success rate from the mean to variance relationship
p = bigμ / σ²
r = bigμ * p / (1 - p)
d = SafeNegativeBinomial(r, p)
nothing
cdf(d, 100)
nothing
logpdf(d, 100)
nothing
mean(d)
nothing
var(d)
nothing
Fields
r::Real
p::Real
EpiAware.EpiAwareUtils.SafePoisson
— Typestruct SafePoisson{T<:Real} <: Distributions.UnivariateDistribution{SafeIntValued}
Create a Poisson distribution with the specified mean that avoids InExactError
when the mean is too large.
Arguments:
λ
: The mean of the Poisson distribution.
Returns:
- A
SafePoisson
distribution with the specified mean.
Examples:
using EpiAware, Distributions
bigλ = exp(48.0) #Large value of λ
d = SafePoisson(bigλ)
nothing
cdf(d, 2)
nothing
logpdf(d, 100)
nothing
mean(d)
nothing
var(d)
nothing
Fields
λ::Real
EpiAware.EpiAwareUtils.accumulate_scan
— Methodaccumulate_scan(
acc_step::AbstractAccumulationStep,
initial_state,
ϵ_t
) -> Any
Apply the `accumulate` function to the `AbstractAccumulationStep` object.
This is effectively a optimised version of a for loop that applies the
`AbstractAccumulationStep` object to the input data in a single pass.
# Arguments
- `acc_step::AbstractAccumulationStep: The accumulation step function.
- `initial_state`: The initial state of the accumulation.
- `ϵ_t::AbstractVector{<:Real}`: The input data.
# Returns
- `state::AbstractVector{<:Real}`: The accumulated state as returned by the
`get_state` function from the output of the `accumulate` function.
# Examples
```julia
using EpiAware
struct TestStep <: AbstractAccumulationStep
a::Float64
end
function (step::TestStep)(state, ϵ)
new_state = step.a * ϵ
return new_state
end
acc_step = TestStep(0.5)
initial_state = zeros(3)
accumulate_scan(acc_step, initial_state, [1.0, 2.0, 3.0])
function get_state(acc_step::TestStep, initial_state, state)
return state
end
accumulate_scan(acc_step, initial_state, [1.0, 2.0, 3.0])
```
EpiAware.EpiAwareUtils.censored_cdf
— Methodcensored_cdf(
dist::Distributions.Distribution;
Δd,
D,
upper
) -> Any
Create a discrete probability cumulative distribution function (CDF) from a given distribution, assuming a uniform distribution over primary event times with censoring intervals of width Δd
for both primary and secondary events.
NB: censored_cdf
returns the non-truncated CDF, i.e. the CDF without conditioning on the secondary event occuring either before or after some time.
Arguments
dist
: The distribution from which to create the PMF.Δd
: The step size for discretizing the domain. Default is 1.0.D
: The upper bound of the domain. Must be greater thanΔd
. DefaultD = nothing
indicates that the distribution should be truncated at its upper
th percentile rounded to nearest multiple of Δd
.
Returns
- A vector representing the CDF with 0.0 appended at the beginning.
Raises
AssertionError
if the minimum value ofdist
is negative.AssertionError
ifΔd
is not positive.AssertionError
ifD
is shorter thanΔd
.AssertionError
ifD
is not a multiple ofΔd
.
Examples
using Distributions
using EpiAware.EpiAwareUtils
dist = Exponential(1.0)
censored_cdf(dist; D = 10)
nothing
EpiAware.EpiAwareUtils.censored_pmf
— Methodcensored_pmf(
dist::Distributions.Distribution,
::Val{:single_censored};
primary_approximation_point,
Δd,
D
)
Create a discrete probability mass function (PMF) from a given distribution, assuming that the primary event happens at primary_approximation_point * Δd
within an intial censoring interval. Common single-censoring approximations are primary_approximation_point = 0
(left-hand approximation), primary_approximation_point = 1
(right-hand) and primary_approximation_point = 0.5
(midpoint).
Arguments
dist
: The distribution from which to create the PMF.- ::Val{:single_censored}: A dummy argument to dispatch to this method. The purpose of the
Val
type argument is that to use single-censored
approximation is an active decision.
primary_approximation_point
: A approximation point for the primary time in its censoring interval.
Default is 0.5 for midpoint approximation.
Δd
: The step size for discretizing the domain. Default is 1.0.D
: The upper bound of the domain. Must be greater thanΔd
.
Returns
- A vector representing the PMF.
Raises:
AssertionError
if the minimum value ofdist
is negative.AssertionError
ifΔd
is not positive.AssertionError
ifD
is not greater thanΔd
.
Examples
using Distributions
using EpiAware.EpiAwareUtils
dist = Exponential(1.0)
censored_pmf(dist, Val(:single_censored); D = 10)
nothing
EpiAware.EpiAwareUtils.censored_pmf
— Methodcensored_pmf(
dist::Distributions.Distribution;
Δd,
D,
upper
) -> Any
Create a discrete probability mass function (PMF) from a given distribution, assuming a uniform distribution over primary event times with censoring intervals of width Δd
for both primary and secondary events. The CDF for the time from the left edge of the interval containing the primary event to the secondary event is created by direct numerical integration (quadrature) of the convolution of the CDF of dist
with the uniform density on [0,Δd)
, using the censored_cdf
function. The discrete PMF for double censored delays is then found using simple differencing on the CDF.
NB: censored_pmf
returns a right-truncated PMF, i.e. the PMF conditioned on the secondary event occurring before or on the final secondary censoring window.
Arguments
dist
: The distribution from which to create the PMF.Δd
: The step size for discretizing the domain. Default is 1.0.D
: The upper bound of the domain. Must be greater thanΔd
. DefaultD = nothing
indicates that the distribution should be truncated at its upper
th percentile rounded to nearest multiple of Δd
.
Returns
- A vector representing the PMF.
Raises
AssertionError
if the minimum value ofdist
is negative.AssertionError
ifΔd
is not positive.AssertionError
ifD
is shorter thanΔd
.AssertionError
ifD
is not a multiple ofΔd
.
Examples
using Distributions
using EpiAware.EpiAwareUtils
dist = Exponential(1.0)
censored_pmf(dist; D = 10)
nothing
EpiAware.EpiAwareUtils.get_param_array
— Methodget_param_array(chn::MCMCChains.Chains) -> Any
Extract a parameter array from a Chains
object chn
that matches the shape of number of sample and chain pairs in chn
.
Arguments
chn::Chains
: TheChains
object containing the MCMC samples.
Returns
param_array
: An array of parameter samples, where each element corresponds to a single
MCMC sample as a NamedTuple
.
Example
Sampling from a simple model which has both scalar and vector quantity random variables across 4 chains.
using Turing, MCMCChains, EpiAware
@model function testmodel()
y ~ Normal()
end
mdl = testmodel()
chn = sample(mdl, Prior(), MCMCSerial(), 2, 1, progress=false)
A = get_param_array(chn)
EpiAware.EpiAwareUtils.get_state
— Methodget_state(
acc_step::AbstractAccumulationStep,
initial_state,
state
) -> Any
Processes the output of the `accumulate` function to return the final state.
# Arguments
- `acc_step::AbstractAccumulationStep`: The accumulation step function.
- `initial_state`: The initial state of the accumulation.
- `state`: The output of the `accumulate` function.
# Returns
- `state`: The combination of the initial state and the last element of
each accumulated state.
EpiAware.EpiAwareUtils.prefix_submodel
— Methodprefix_submodel(
model::AbstractModel,
fn::Function,
prefix::String,
kwargs...
) -> Any
Generate a submodel with an optional prefix. A lightweight wrapper around the @submodel
macro from DynamicPPL.jl.
Arguments
model::AbstractModel
: The model to be used.fn::Function
: The Turing @model function to be applied to the model.prefix::String
: The prefix to be used. If the prefix is an empty string, the submodel is created without a prefix.
Returns
submodel
: The returns from the submodel are passed through.
Examples
using EpiAware, DynamicPPL
submodel = prefix_submodel(FixedIntercept(0.1), generate_latent, string(1), 2)
We can now draw a sample from the submodel.
rand(submodel)
EpiAware.EpiAwareUtils.spread_draws
— Methodspread_draws(chn::MCMCChains.Chains) -> DataFrames.DataFrame
spread_draws(chn::Chains)
Converts a Chains
object into a DataFrame in tidybayes
format.
Arguments
chn::Chains
: TheChains
object to be converted.
Returns
df::DataFrame
: The converted DataFrame.
EpiAware.EpiAwareUtils.∫F
— Method∫F(dist, t, Δd) -> Any
Calculate the CDF of the random variable X + U
where X
has cumulative distriubtion function F
and U
is a uniform random variable on [0, Δd)
.
This is used in solving for censored CDFs and PMFs using numerical quadrature.