Internal Documentation
Documentation for EpiAwareUtils.jl's internal interface.
Contents
Index
EpiAware.EpiAwareBase._apply_methodEpiAware.EpiAwareBase._apply_methodEpiAware.EpiAwareBase._apply_methodEpiAware.EpiAwareBase._apply_methodEpiAware.EpiAwareBase.condition_modelEpiAware.EpiAwareBase.generate_epiawareEpiAware.EpiAwareBase.generated_observablesEpiAware.EpiAwareUtils._apply_direct_sampleEpiAware.EpiAwareUtils._apply_direct_sampleEpiAware.EpiAwareUtils._check_and_give_ts
Internal API
EpiAware.EpiAwareBase._apply_method — Function_apply_method(
model::DynamicPPL.Model,
method::AbstractEpiMethod;
...
) -> Any
_apply_method(
model::DynamicPPL.Model,
method::AbstractEpiMethod,
prev_result;
kwargs...
) -> Any
Apply the inference/generative method method to the Model object mdl.
Arguments
model::AbstractEpiModel: The model to apply the method to.method::AbstractEpiMethod: The epidemiological method to apply.prev_result: The previous result of the method.kwargs: Additional keyword arguments passed to the method.
Returns
nothing: If no concrete implementation is defined for the givenmethod.
EpiAware.EpiAwareBase._apply_method — Function_apply_method(
model::DynamicPPL.Model,
method::DirectSample;
...
) -> Any
_apply_method(
model::DynamicPPL.Model,
method::DirectSample,
prev_result;
kwargs...
) -> Any
Implements direct sampling from a Turing model.
EpiAware.EpiAwareBase._apply_method — Method_apply_method(
model::DynamicPPL.Model,
method::EpiMethod,
prev_result;
kwargs...
) -> Any
Apply steps defined by an EpiMethod to a model object.
This function applies the steps defined by an EpiMethod object to a Model object. It iterates over the pre-sampler steps defined in the EpiMethod object and recursively applies them to the model. Finally, it applies the sampler step defined in the EpiMethod object to the model. The prev_result argument is used to pass the result obtained from applying the previous steps, if any.
Arguments
method::EpiMethod: TheEpiMethodobject containing the steps to be applied.model::Model: The model object to which the steps will be applied.prev_result: The previous result obtained from applying the steps. Defaults tonothing.kwargs...: Additional keyword arguments that can be passed to the steps.
Returns
prev_result: The result obtained after applying the steps.
EpiAware.EpiAwareBase._apply_method — Method_apply_method(
model::DynamicPPL.Model,
method::EpiMethod;
kwargs...
) -> Any
Apply a method to a mode without previous results
Arguments
model::Model: The model to apply the method to.method::EpiMethod: The method to apply.kwargs...: Additional keyword arguments.
Returns
- The result of applying the method to the model.
EpiAware.EpiAwareBase.condition_model — Methodcondition_model(
model::DynamicPPL.Model,
fix_parameters::NamedTuple,
condition_parameters::NamedTuple
) -> Any
Apply the condition to the model by fixing the specified parameters and conditioning on the others.
Arguments
model::Model: The model to be conditioned.fix_parameters::NamedTuple: The parameters to be fixed.condition_parameters::NamedTuple: The parameters to be conditioned on.
Returns
_model: The conditioned model.
EpiAware.EpiAwareBase.generate_epiaware — Methodgenerate_epiaware(
y_t,
time_steps,
epi_model::AbstractTuringEpiModel;
latent_model,
observation_model
)
Generate an epi-aware model given the observed data and model specifications.
Arguments
y_t: Observed data.time_steps: Number of time steps.epi_model: A Turing Epi model specification.latent_model: A Turing Latent model specification.observation_model: A Turing Observation model specification.
Returns
A DynamicPPPL.Model object.
EpiAware.EpiAwareBase.generated_observables — Methodgenerated_observables(
model::DynamicPPL.Model,
data,
solution::Union{NamedTuple, MCMCChains.Chains}
) -> EpiAwareObservables
Generate observables from a given model and solution including generated quantities.
EpiAware.EpiAwareUtils._apply_direct_sample — Method_apply_direct_sample(
model,
method,
n_samples::Int64;
kwargs...
) -> Any
Sample the model directly using Turing.Prior() and a NamedTuple of the sampled random variables along with generated quantities.
EpiAware.EpiAwareUtils._apply_direct_sample — Method_apply_direct_sample(
model,
method,
n_samples::Nothing
) -> Any
Sample the model directly using rand and return a single set of sampled random variables.
EpiAware.EpiAwareUtils._check_and_give_ts — Method_check_and_give_ts(
dist::Distributions.Distribution,
Δd,
D,
upper
) -> Any
Internal function to check censored_pmf arguments and return the time steps of the rightmost limits of the censor intervals.